
Automatic Correction to Misspelled Names: -, 1

Michael Allen Bickel *
The MITRE Corporation

Summary

An information theoretic likeness measure is defined as

an inner product on a data space created from a table of

valid names. Using this measure, a 4GL procedure searches

this data base space for the nearest correctly spelled name.

I n t roduc t ion

A large data base application which uses personal names

as part of a key must ensure that these names are spelled

consistently. Otherwise, retrieval becomes unnecessarily

complicated, since most computers interpret a misspelled name

to mean a different person. An algorithm for automatically

identifying two different spellings of the same name may seem

to be impossible and unrealistic; however, this new approach

is more than 95% successful and is the subject of this

article.

* 1120 Nasa Road 1
I ,

i i i MI&: I6'tH floor

Houstort, Texas 77558

(NASA-CR-182322) AUTOflATXC C O R R E C T I O N TO ~ a a - 7 0 1 3 7
NISSPBLLED NAMES: A 4TH G E E E R A T I O N L A Y G U A i A
APPROKH :nitre C o r p .) 15 p

Unclas
03/82 OllU215

With an existing computer network, NASA is creating an

on-line data base to catalog and track the multitude of tasks

necessary for each shuttle launch. The straightforward way to

index these tasks is to use the task assignee's name as the

primary key. This results in fast retrieval for each

assignee, but it also forces tasks assigned to "Jones, Robert

A . " to be stored separately from tasks assigned to "Jones,

Bob A . " . (Name is used throughout thisarticle as a data type

with format "lastname, firstname middleinitial.")

One solution to this problem, caused by nicknames and

misspellings, is a table G € valid names, with the requirement

that each assignee entered into the data base be a member of

this names table; any attempt to assign a task to a person

not in this table will fail. A single data entry point has

the responsibility for entering new employee's names into

this table before any tasks can be assigned to them. This

names table and the membership requirement has been specified

in a schema declaration using NOMAD2, a 4'th generation data

base language and management system in use at the Johnson

Space Center. This language can optionally branch to user

defined procedures in the event of an error or a membership

failure. The membership failure branch in this application

reads the user's screen for the misspelled name which failed

the 'me&e;ship test and then 'searcfies for the nearest 'valid '
I 1

2

name in the names table. If the search is successful, the

procedure permits the user to correct the name on the screen

and then the membership test is passed; otherwise, a subset

of the names table is displayed for a user selection.

A major consideration in designing a names table search

algorithm is its execution time. The names table at NASA

contains almost one thousand names and yet the response time

must be less than one or two seconds. The algorithm presented

here assumes that the first letter of lastname is known with

certainty and therefore the search is limited to this section

of the names table. Even with this reduction, sometimes a

hundred names must be searched.

To achieve acceptable response times, it is critical

that only the functions supplied with the data base language

be employed; these functions are optimized by the 4GL

compiler. This application requires the repeated computation

of an inner product of two vectors, one of which contains

only zeroes and ones. This type of product can be calculated

very rapidly, without multiplication, by using two numerical

array (vector) functions that are included in NOMAD2: array

summation (term by term addition of two arrays) and array sum

(scalar sum of the elements in an array). The skillful use of

t he 'NOb2''datal type 'NAV cdhta not available), enables this
, 4

I

3

inner product to be replaced by sum and summation. This data

type is functionally appropriate since all calculations

involving NAV arguments result in a NAV answer and all

numerical NAV items may be replaced by zero using the single

command 'ZNAV'. This 4GL procedure is logically equivalent to

bit by bit 'anding' of two 27 bit integers and then using the

result to mask a weight array before summing. The geometric

basis for using an inner product is discussed in the remarks

at the end of this article.

Heur i st ic

Some misspellings, such as the omission of a character,

will shift correctly spelled characters into incorrect

positions. In these cases, the position of any character

within the name is less valuable as search information than

the actual character. This is because a position by position

comparison usually disagrees on characters to the right of

the omission: for example, if "Addison, Bob G." is the

intended name and "Adison, Bob G." is the entered name, then

a position by position comparison agrees only on the left two

characters.

In addition, a less frequently occurring character, such

as a " y " , is more valuable as search information than a more
I

I frequently occurrinh character, such1 as an "e"'. Therefore,

4

each character is assigned a number from 3 to 9 as an

information weight; 3 is the weight for "a,e,i,n,o,s,t" ; 4

is the weight for "d,h,l,r,u" ; 5 is the weight for

"c,f,g,m,p,w" ; 6 is the weight for "b,v" ; 7 is the weight

for "k,q" ; 8 is the weight for llj,x,y" ; 9 is the weight for

"z"; and 0 is the weight for all non-alpha characters.

Based upon these weights, this algorithm computes a

likeness value for any two names as follows: every likeness

is initially set to zero; then, for each character in the

alphabet, if that character is present in both names, the

weight for that character is added to the likeness value.

Using this method, and pairing the misspelled name with each

name in the reduced names table, a likeness value is computed

for each pair. From the pair with the largest likeness value,

the name most probably intended by the user is displayed and

the user is queried whether this is the correct name.

Notice that each character of the alphabet contributes

to the likeness value at most once, regardless of its

multiplicity in either name. A l s o , the first character in

lastname entered on the screen always contributes since each

lastname remaining in the reduced names table begins with

this character.
/ I , I I 1

i / i I

5

Before ending this heuristic, two points essential to

the success of this method should be mentioned explicitly.

First, nobody has a name which contains every letter of the

alphabet; if such a name existed, it would always produce the

maximum LIKENESS regardless of the misspelled name. Second,

the number of names in the names table is small compared to

the total number of names possible. This implies a sparseness

in the names table that translates into a sparseness in the

name space; i.e., most names in the name space are well

separated from each other. These are the reasons that the

nearest valid name in the names table is usually the name the

user intended.

Pseudo-code for NAMESTABLE

(procedure for entering new employee names)

1) Fetch the new employee NAME entered on the screen

2) Call HASH (NAME , MASK) to compute the array MASK

Let MASK = MASK * WEIGHT
(where * is array product,i.e. term by term multiply)

3) Insert NAME and MASK in the NAMES TABLE file

Return

- HASH (NAME , MASK)

Initialize the array MASK(1 to 27)=O

F o r 'each 'chabacte'r' i'n NAME, set MASK (character) = l '

where character denotes the position of this character in

t , / I

b

1)

2)

3)

4)

the alphabet (i.e., 1 to 26 for letters A through Z) and 27

is assigned for any number or other symbol (all non-alpha

characters)

Return

Pseudo-code for NAMESEARCH

(procedure executed on membership failure)

Fetch the NAME entered on screen (lastname, firstname mi.)

Reduce the NAMES TABLE assuming that the first character of

lastname is correct

Call HASH (NAME , MASK to compute the array MASK

Change the zeroes in MASK to NAVs

Then change the ones in MASK to zeroes

Save as MASKSAVE

For each NAME in the reduced NAMES TABLE

Fetch the accompanying MASK

Call the scalar function LIKENESS (MASKSAVE , MASK)

Find the pair with the largest LIKENESS

(Special case to handle tied LIKENESSes)

Display the pair of names having the largest LIKENESS

Query the user whether this is the intended name

If correct, move the intended name to the screen

Else display the reduced NAMES TABLE for a search

Return

- LIKENESS (MASKSAVE , MASK I !Returns a scalar!

7

TEMP = MASKSAVE + MASK

TEMP = ZNAV(TEMP)

LIKENESS = SUM(TEMP)

Return

!term by term add!

!change NAV's to zeros!

!sum all array elements!

Notice how the NAV entries in MASKSAVE mask the unwanted

weights in MASK and also how the zero entries in MASKSAVE

pass the wanted weights in MASK. Changing the NAV entries in

TEMP to zero and summing, results in precisely the sum of the

unmasked weights in MASK.

Remarks

The weight assigned t o a character is based upon the

relative frequency with which that character occurs. These

relative frequencies can be computed from the names table or

defaulted to typical English frequency distributions. The

weights calculated from the frequencies in the names table at

Johnson Space Center are remarkably close to the weights

computed from standard English frequencies, except for 'J'

and 'Q'. First order information theory 111 calculates the

weight of a character according to the following formula:

WEIGHT(character1 = - LOG(frequency(character))

where/ LOdi id a base '2 logarikhm.

a

Different names do not always produce different MASKS;

for example, "Anders, Dan R." and "Andersen, Sean D." both

have the same MASK. Hence, this method may not always find

the intended name even when extra values based upon

positional agreements are added to LIKENESS. Significant

positions for checking agreements include: the first

character of each firstname; the middle initials; the second

character of each lastname; and the third character of each

lastname. Using these refinements, this algorithm is

generally more successful (i.e., fewer collisions) than the

SOUNDEX algorithm which uses a hash that is only four

characters long [21 .

Using valid names from the names table, three different

simulations are used to generate misspelled names for timing

and accuracy measurements. SIMI generates a misspelled name

by inserting a random letter at a random position (anywhere

except the first position). SIM2 generates a misspelled name

by omiting one letter at a random position (anywhere except

the first position). SIM3 generates a misspelled name by

exchanging the letters at any two random positions (anywhere

except the first position). From each name in the names

table, a misspelled name is generated and then this

misspelling is used for searching the names table. Counters

i tadlktdi thd! nimijef of''suc ssful' searches and t h e time

i

9

elapsed. The time measured is the total response time (not

simply the CPU time) and includes program overhead, system

and network processing,and database I/O. These times are

dependent, not only upon the comlexity of the algorithm, but

also upon the number of applications and the number of users

on the host during these timing measurements. Hence, a good

and a worst response time were computed during moderate and

heavy loads. During light usage, the reponse time is

considerably better than the minimum time reported. The

following table summarizes these measurements:

SIMl SIM2 SIM3

____ _ _ _ _ _ ~

I times I 0.7 sec I 1.1 sec I 0.8 sec I

I times I 1.5 sec I 1.9 sec I 1.4 sec I

I % error I 4.5 % I 3.0 % I 2.4 % I

The effectiveness of this algorithm is due to the

geometrical meaning of inner product within the data space of

names. Via the subroutine HASH, any name (not necessarily a

name in the names table) may be mapped to a corner of a 26

dimensional cube called the name space as follows: A corner
! ! d H i d cu& is chosen As tHe origin for the name space and

I
1 I , .

i
I

! '

10

each of the 26 dimensions (i.e., 26 different directions from

this origin) is associated with one character of the

alphabet. Then, by using the MASK associated with each name

as a set of coordinates, each name is mapped to a point

(i.e., a corner) in the name space. Thus, each name is

associated with a point which determines a vector in the name

space beginning at the origin and ending at that point. A

pair of names determines two vectors which lie in a plane

containing the origin and these two vectors meet at the

origin in a definite angle.

The inner product of two vectors is equal to the product

of their lengths times the cosine of the angle between these

two vectors. If a correct spelling exists, it must be found

within a small region of the name space surrounding the

misspelled name entered on the screen (the assumption is that

the nearest name is probably the intended name). In any small

region of the name space, the lengths of the name vectors are

almost constant, hence the inner product varies as the cosine

of the angle between the name vectors. The nearest name in

the names table corresponds to the name vector subtending the

smallest angle and this maximizes the cosine factor in the

inner product. Thus, the nearest name always corresponds to

the maximum inner product and is located by finding the
! * 1 1 !

i b I / l arges i CI&"SS.
I

, . j , , . ,

1 1

A three dimensional example may be used to graphically

illustrate this idea. Suppose that the alphabet consists of

only three letters {A,B,C) and that they each have unit

weights. Suppose also, that "AC" is the misspelled name

entered on the screen and that the names table contains the

following names: " A " , "BA", "AB", and "ABC". After reducing

the names table, it is necessary to calculate LIKENESSes for

three pairs of names: ("AC","A"), ("AC","AB"), and

("AC","ABC"). These LIKENESSes and their associated angles

are graphed in the following diagrams.

(AC,A) (AC,AB)

BC ABC ABC

B B

AC AC

0 0 A

(AC, ABC)

1 2

MASKSAVE(AC)

+MASK (ABC)

MASKSAVE(AC) MASKSAVE(AC)

+MASK (AB) +MASK (A 1

=TEMP =TEMP =TEMP

AC ==> 0 NAV 0 AC ==> 0 NAV 0 AC ==> 0 NAV 0

A ==>+I +o +o AB ==>+I + I +o ABC = = > + I + I + 1

--------- --------- ---------

TEMP = 1 NAV 0 1 NAV 0 I NAV 1

ZNAV

(TEMP)==>I 0 0 1 0 0 1 0 1

SUM

(TEMP)=

LIKENESS= 1 +O +0=1 1 +o +0=1 1 +o +1=2

ANGLE= 45 60 35

The pseudo-code equations are repeated here for convenience:

TEMP = MASKSAVE + MASK !term by term add!

TEMP = ZNAV(TEMP) !change NAV's to zeros!

LIKENESS = SUM(TEMP) !sum all array elements!

Thus, ABC is probably the name intended, since it yields

argest! LIKENEXIS (i ie . , it subtends tde SmaXlest' angiell.
i .
!

, .

!

13

A name containing all of the letters in the alphabet,

like this example, would always produce the largest LIKENESS;

however, in reality, no valid name contains all of the

characters in the alphabet. Put another way, names tend to be

mapped to corners in the name space that are close to the

origin and names become very scarse near the corner opposite

the origin (this corner corresponds to the name containing

all of the letters). This fact and the sparseness of names in

the name space enable this method to be successful.

A quote from Niklaus Wirth's new book is completely

appropriate for ending this article.[31 During the analysis

of key transformations, Wirth says ' I . . . considerable

confidence in the correctness of the laws of probability

theory is needed by anyone using the hash technique." Thus,

even though this method may seem to magically find the

correct spelling, there is no magic in algorithms, and its

success is due to mathematics.

Acknowledgments

I wish to thank all of my colleagues at MITRE who

contributed to this article through their discussions.

Special thanks to Walter Bays, Roger Pearson, Frank Venezia,

George Stark, and Walt Colquitt. A l s o , I wish to thank my

NASA li'asoni, Elena Hufstetldr, who always beleived tHat it

I ~

1 4

should be possible. This work was done at MITRE and supported

by Air Force contract F 19628-86-C-0001 NASA T-3589M.

References

[I] Young, John F., "Information Theory",Wiley

Interscience, New York (1971) pp. 44-45.

121 Knuth, Donald E., "Art of Computer Programminq",

Addison Wesley, Reading Massachusetts (1973)

~01.3 pp. 391-392.

C31 Wirth, Niklaus. "Algorithms and Data Structures",

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

(1986) pp. 277.

15

